Hilbert spaces of analytic functions of infinitely many variables
نویسندگان
چکیده
منابع مشابه
Stable splittings of Hilbert spaces of functions of infinitely many variables
We present an approach to defining Hilbert spaces of functions depending on infinitely many variables or parameters, with emphasis on a weighted tensor product construction based on stable space splittings. The construction has been used in an exemplary way for guiding dimensionand scale-adaptive algorithms in application areas such as statistical learning theory, reduced order modeling, and in...
متن کاملOn weighted Hilbert spaces and integration of functions of infinitely many variables
We study aspects of the analytic foundations of integration and closely related problems for functions of infinite many variables x1, x2, . . . ∈ D. The setting is based on a reproducing kernel k for functions on D, a family of non-negative weights γu, where u varies over all finite subsets of N, and a probability measure ρ on D. We consider the weighted superposition K = ∑ u γuku of finite ten...
متن کاملComposition operators acting on weighted Hilbert spaces of analytic functions
In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولcomposition operators acting on weighted hilbert spaces of analytic functions
in this paper, we considered composition operators on weighted hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a hilbert-schmidt characterization and characterizes the membership in schatten-class for these operators. also, closed range composition operators are investigated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 2003
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap81-2-2